Chameleon & Argo: Experiments in Exascale System Software

Swann Perarnau

Argonne National Laboratory

September 13rd, 2017

 Swann Perarnau (ANL)
 Chameleon/Argo
 2017/09/13
 1 / 19

What to Expect of an Exascale System

Hardware

Projected for 2020-25.

- Compute Nodes: O(100 000)
- CPU Cores/node: O(100)
- Interconnect: > 3 dimensions
- Power: around 30 MW

Consequences

- High intra-node parallelism
- OS must integrate/abstract new technologies
- High failure rate
- Complex resource management

A Software Stack for Exascale: Argo

Project goal

Design and prototype a system software and runtime stack for exascale.

Project members

D.O.E funded, 3 national labs, 4 universities

- ANL, LLNL, PNNL
- UTK, UIUC, UO, UChicago

About 35 people.

 Swann Perarnau (ANL)
 Chameleon/Argo
 2017/09/13
 3 / 19

Argo (2)

Argobots

Modern Runtime for high intra-node parallelism.

- User-level task and threading model
- Interactions with OS and Communication libraries

NodeOS

Linux with HPC specializations.

- Compute Containers: partitioning instead of isolation/sharing.
- New scheduler and memory subsystems.

2017/09/13

4 / 19

Swann Perarnau (ANL) Chameleon/Argo

Argo (3)

Global Information Bus

High-level components for complex communications requirements.

- Pub-sub system, data aggregation, ...
- Designed with failures and dedicated networks in mind.

GlobalOS

Distributed management of the entire system.

- Encapsulate configuration and policies inside group of nodes (enclaves).
- Dedicated nodes for system management across the machine.

2017/09/13

5 / 19

Swann Perarnau (ANL) Chameleon/Argo

NOT in Argo

Out of scope

- I/O
- MPI (need to be compatible)
- Sysops

Interaction with other components

- Batch Scheduler
- Power/Boot switches
- Workflows

Swann Perarnau (ANL)

6 / 19

My Work at Argonne

50 % GlobalOS

Design, prototype, and evaluate the infrastructure to configure, control, and monitor the resources of an exascale machine.

50 % NodeOS

- GlobalOS/NodeOS interactions (containers, resource management),
- Study future memory systems.

50 % Integration

Build and maintain our integration platform on top of Chameleon.

7 / 19

Swann Perarnau (ANL) Chameleon/Argo 2017/09/13

Outline

Introduction

- 2 Chameleon Experiments: Power Management
- Oiscussion

8 / 19

Plan

Introduction

- 2 Chameleon Experiments: Power Management
- Oiscussion

Power at Exascale

Several Issues

- Limited global power budget,
- Variability in manufacturing process,
- Imbalance in work distribution.

Our Approach

- Distribute power management across the enclaves hierarchy,
- Use feedback from application/job to balance power/performance,
- As many control levers as possible.

 Swann Perarnau (ANL)
 Chameleon/Argo
 2017/09/13
 10 / 19

Global Power Management

Role

- Receive global limit from outside sources (sysops),
- Use the enclave hierarchy to recursively distribute power.

Features

- Use GIB to monitor power consumption across enclaves,
- Can split power between enclaves, and between nodes in an enclave.
- (Future Work) Closed loop: use performance monitoring to help decision.

 Swann Perarnau (ANL)
 Chameleon/Argo
 2017/09/13
 11 / 19

Node Power Management

Role

- Receive power budget from enclave manager,
- Apply power budget using available levers.

Features

- Use GIB to monitor power and performance of application.
- Hardware levers: DVFS and RAPL.
- Software levers: can tell the runtime to reduce its core usage.

 Swann Peramau (ANL)
 Chameleon/Argo
 2017/09/13
 12 / 19

Chameleon Experiment

- Control baremetal cluster;
- Install NFS, Job scheduler, system services;
- Partition cluster in two separate jobs;
- Boot on each node our NodeOS;
- Isolate applications from OS noise;
- Launch one MPI application per job, using tasking runtime internally
- Monitor power consumption
- Adjust power dynamically by asking each node to reduce/increase its consumption;
- Upon power budget changes, ask the node runtime to remove/add threads to the application

 Swann Perarnau (ANL)
 Chameleon/Argo
 2017/09/13
 13 / 19

Video: SC15 Demo

Swann Perarnau (ANL)

Machine Setup

Overall design

- Scripts against OpenStack API for node creation, boot.
- Ansible playbooks for NFS, scheduler, system configuration.
- Job scheduler triggers node boot/shutdown dynamically.
- Whole-disk images for NodeOS installation.
- Containers for resource partitioning.
- Custom MPI launcher to spawn into containers directly.

Allocation Issues

First version on weeks-long node reservation

- \rightarrow Most compute nodes idle when no job is running.
- Second version using KVM cloud for frontend, NFS, scheduler
- → Dynamic reservations for compute nodes.

Plan

Introduction

- 2 Chameleon Experiments: Power Management
- Oiscussion

On Chameleon

Argo was a challenging user at the beginning

- Missing low-level controls: whole-disk images, boot configuration.
- Week-long allocations of 30+ nodes.
- NTP/DNS access, highly concurrent node creation/deletion.

We are really happy with it

- Self-managed platform was a nightmare.
- Very responsive and helpful admins.
- Modern hardware, regular software updates.

 Swann Peramau (ANL)
 Chameleon/Argo
 2017/09/13
 17 / 19

Future Chameleon Usage

More automation

- Appliances?
- Would really like to do CI/CD on Chameleon...

What we're still missing

- BIOS reconfiguration
- Deep Memory systems (KNL)
- VPN/direct communication between 3 'sites'

 Swann Perarnau (ANL)
 Chameleon/Argo
 2017/09/13
 18 / 19

Any Questions?

